Поиск по сайту: |
|
По базе: |
|
Главная страница > Обзоры по типам > Транзисторы > Принципы работы мощных MOSFET и IGBT транзисторов |
|
||||||||||||
ДиаграммыС приведенными данными этот раздел даст некоторые рекомендации для рассмотрения диаграмм по MOSFET. В случае, если диаграмма детально рассмотрена в других разделах, на это будет ссылка. Номинальная рассеиваемая мощность PD MOSFET модуля от температуры корпуса Tcase
Основана на номинальной рассеиваемой мощности на MOSFET PD(25°С) = (Tjmax - 25°С)/Rthjc которое ограничено Tcase= 25°С по определению, функция описывает снижение номинального значения при высоких температурах корпуса. Максимально безопасная область при импульсной работе (SOA) Как показано в п. 1.2.3, MOSFET должен работать при почти прямоугольной характеристике i = f(u) между VDD и IL при жестком переключении. SOA-диаграммы отображают ширину зоны, в которой можно безопасно работать:
Рис.2.3 показывает максимум кривой ID = f(VD) при коммутации и в открытом состоянии для разных длительностей импульса tp с двойной логарифмической шкалой. Важно, что максимальные значения справедливы при температуре корпуса Tcase= 25°С и для одиночных импульсов, которые не нагреют MOSFET выше максимальной температуры кристалла Tj = 150°С. Хотя нижняя из приведенных диагоналей представляет преувеличение максимальных постоянных потерь тепла Ptot, MOSFET модули могут подойти к линейной характеристике площади при коммутации. Работа в аналоговом режиме длительный период времени не допустима из-за асимметрии при разбросе среди кристаллов, а также отрицательный температурный коэффициент пороговых напряжений может вызвать температурную нестабильность
Выходная характеристика ID = f(VDS) Рис.2.4 показывает выходную характеристику (типичное значение) с параметром VGS (также см. п.1.2.2.1)
Переходная характеристика ID = f(VGS) Переходная характеристика (рис.2.5) показывает поведение MOSFET на рабочем участке при VDS = 25 В (линейная работа). Ток стока связан с напряжением затвор-исток через ID = gfs · (VGS - VGS(th)).
Сопротивление в открытом состоянии от температуры кристалла См. п. 2.6 Зависимость тока стока от температуры кристалла См. п. 2.6 Зависимость напряжения пробоя сток-исток от температуры Как показано на рис.2.6 напряжения пробоя сток-исток MOSFET растет линейно от температуры. Так как максимальное значение приведено в справочных данных при Tj = 25°С, можно учесть его величину при более низких температурах.
Изменение напряжения сток-исток от скорости снижения тока стока См. п. 3.1.1 Внутренние емкости от напряжения сток-исток См. п.1.2.3 Характеристика заряда затвора См. п.1.2.3 Прямая характеристика диода См. п.1.2.2.1 Зависимость прямого сопротивления от тока стока Рис.2.7 разъясняет соотношение между прямым сопротивлением RDS(on) и током стока ID или напряжением затвор-исток VGS для полностью управляемого MOSFET
Сопротивление растет с возрастанием напряжения затвор-исток. На любой точке кривой можно увидеть плавное увеличение RDS(on) вместе с током стока. Зависимость порогового напряжения затвор исток от температуры На рис.2.8 показаны три кривые с типичными и предельными значениями, характеризующими зависимость между пороговым напряжением VGS(th) и температурой кристалла MOSFET Tj.
VGS(th) будет линейно падать с возрастанием Tj. Температурный коэффициент порогового напряжения составляет около -10 мВ/К в диапазоне температур -50...+150°С. Переходные температурные импедансы для IGBT и обратных диодов См. п. 3.2
Главная - Микросхемы - DOC - ЖКИ - Источники питания - Электромеханика - Интерфейсы - Программы - Применения - Статьи |
|
Впервые? | Реклама на сайте | О проекте | Карта портала тел. редакции: +7 (995) 900 6254. e-mail:info@eust.ru ©1998-2023 Рынок Микроэлектроники |
|