В HTML      В PDF
микроэлектроника, микросхема, транзистор, диод, микроконтроллер, память, msp430, Atmel, Maxim, LCD, hd44780, t6963, sed1335, avr, mega128
Предприятия Компоненты Документация Применения Статьи Новости

  • Микроконтроллеры
  • ЖК-модули
  • АЦП
  • ЦАП
  • Интерфейсы
  • Wireless
  • Усилители
  • Компараторы
  • Коммутаторы
  • Датчики
  • Cтабилизаторы напряжения
  • Транзисторы
  • Стандартная логика
  • Светодиоды

    Механические свойства ИС
  • Электромеханика
  • Корпуса микросхем
  • Корпуса Pb-free
  • IP и IK защита
  • Маркировка ИС
  • Резисторы
  • Перечень сертификатов
  • Соответствие калибров AWG
  •  
    Пересюхтюмя


    13-я Международная выставка электронных компонентов и комплектующих для электронной промышленности





    Выставка Передовые Технологии Автоматизации





    Главная страница > Обзоры по типам > Транзисторы > Принципы работы мощных MOSFET и IGBT транзисторов
    Пересюхтюмя


    13-я Международная выставка электронных компонентов и комплектующих для электронной промышленности





    Выставка Передовые Технологии Автоматизации


    Проблема разделения напряжения

    Для повышения обратного напряжения силовых электронных ключей, IGBT и MOSFET могут быть подключены последовательно.

    При последовательном включении силовых модулей, транзисторы и необходимые обратные диоды также последовательны. Так как последовательное включение быстрых диодов уже изложено в п. 1.3.5.1, далее будут рассматриваться только сложности включения IGBT/MOSFET.

    Максимальное использование ключа в последовательном соединении может быть получено в случае идеальной статической (напр. в закрытом состоянии) и динамической (напр. в момент коммутации) симметрии одиночных ключей. Поэтому, оптимальные условия симметрии играют главную роль для последовательного соединения на практике.

    На симметрию в основном влияют следующие факторы:

    Фактор Влияет на
    Статическую симметрию Динамическую симметрию

    IGBT/MOSFET параметры

       
    iCES = f(vCE, vGE, Tj) или RDSS = f(vDS, vGS, Tj) x  
    vGE(th) или vGS(th)   x
    td(on), td(off), tr, tf (вместе с параметрами драйвера)   x

    Цепь драйвера

       
    Выходной импеданс драйвера (включая последовательные сопротивления затвора)   x
    Общая индуктивность (внутри модуля + снаружи модуля)   x
    Индуктивность цепи драйвера, через которую проходит ток коллектора/стока   x
    Время прохождения сигнала в драйвере   x

    Причины статической асимметрии

    В выключенном состоянии IGBT/MOSFET условия симметрии определены характеристикой запирания транзисторов, подключенных последовательно. Чем больше ток запирания транзистора или, в свою очередь, меньше сопротивление в закрытом состоянии, тем меньше напряжение на транзисторе, если он включен последовательно. Температурный коэффициент тока в закрытом состоянии для IGBT/MOSFET положительный, т.е. ток будет расти линейно с ростом температуры.

    Причины динамической асимметрии

    Все вышеупомянутые факторы, обусловливающие динамическую асимметрию, в результате приведут к отклонению времен переключения последовательных транзисторов. Транзистор, который выключится первым, и который включится последним, будет подвергаться большему напряжению и, следовательно, с большими потерями при коммутации. Превышение максимально допустимого напряжения транзистора должно предотвращаться способами, изложенными ниже.



    <-- Предыдущая страница Оглавление Следующая страница -->