В HTML      В PDF
микроэлектроника, микросхема, транзистор, диод, микроконтроллер, память, msp430, Atmel, Maxim, LCD, hd44780, t6963, sed1335, avr, mega128
Предприятия Компоненты Документация Применения Статьи Новости

  • Микроконтроллеры
  • ЖК-модули
  • АЦП
  • ЦАП
  • Интерфейсы
  • Wireless
  • Усилители
  • Компараторы
  • Коммутаторы
  • Датчики
  • Cтабилизаторы напряжения
  • Транзисторы
  • Стандартная логика
  • Светодиоды

    Механические свойства ИС
  • Электромеханика
  • Корпуса микросхем
  • Корпуса Pb-free
  • IP и IK защита
  • Маркировка ИС
  • Резисторы
  • Перечень сертификатов
  • Соответствие калибров AWG
  •  
    Пересюхтюмя


    13-я Международная выставка электронных компонентов и комплектующих для электронной промышленности





    Выставка Передовые Технологии Автоматизации





    Главная страница > Обзоры по типам > Транзисторы > Принципы работы мощных MOSFET и IGBT транзисторов
    Пересюхтюмя


    13-я Международная выставка электронных компонентов и комплектующих для электронной промышленности





    Выставка Передовые Технологии Автоматизации


    Адаптация внутренней структуры к ЭМС

    Большая скорость нарастания тока и напряжения в нс-диапазоне на MOSFET и IGBT модулях генерирует электромагнитные помехи с частотами далеко за МГц-диапазоном. Следовательно, обычные паразитные элементы внутренних и внешних путей прохождения сигнала в модуле оказывают значительное влияние на генерируемое напряжение помех.

    Соответствующие изоляционные материалы, короткие соединяющие площадки или защитные экраны могут уменьшить, например, асимметричные помехи [193].

    В дополнение к этому, внутренние соединения модуля должны быть выполнены таким образом, чтобы исключить сбои, вызванные внешними паразитными полями или трансформаторной связью с проводами управления.

    Другим аспектом электромагнитной совместимости является «ток земли», т.е. ток iE = СE·dvCE/dt, который протекает благодаря емкости изоляции подложки СЕ, вызванный генерируемым в IGBT dvCE/dt при коммутации через заземленный теплоотвод к земляной шине. Земляной ток определяется как ток утечки, его допустимое максимальное значение ограничено 0.1.5 % (преимущественно 1 %) от номинального выходного тока.

    Соответственно, допустимая частота коммутации будет расти пропорционально уменьшению емкости изоляционной подложки.

    На рис.1.56 сравниваются емкости наиболее часто используемых подложек по отношению к их стандартной толщине. Отклонения диэлектрических констант и стандартная зависимость толщины от теплопроводности (наибольшая толщина подложки AIN 630 мкм, наиболее тонкая подложка требуется для IMS-структуры 120 мкм для эпоксидной изоляции, 25 мкм - полиимидной) проявляется в отношении емкостей СЕ и, таким образом, в различных пределах максимальной скорости коммутации dvCE/dt с приемлемым током земли iE.

    Емкость на единицу площади для различных изоляционных подложек
    Рис. 1.56. Емкость на единицу площади для различных изоляционных подложек



    <-- Предыдущая страница Оглавление Следующая страница -->