Поиск по сайту: |
|
По базе: |
|
Главная страница > Статьи > Разное |
|
|||||||||
Технология CapSenseКраткое знакомство с технологией, использующей уникальные особенности PSoC для реализации эффективной обработки сигналов от сенсоровИзмерение емкости Измерение емкости используется в тех приложениях, где требуется создание бесконтактных переключателей (сенсоров) для интерфейса с пользователем. Защищенные диэлектриком, емкостные сенсоры представляют собой элегантный дизайн и обеспечивают надежность при работе в различной окружающей среде. Упрощенно, емкостной сенсор - это пара смежных проводников (рис. 1). Когда проводящий объект приближается к этим электродам, появляется емкость между электродами и проводящим объектом. Как правило, под проводящим объектом подразумевается палец, но возможно и применение других объектов.
Обычно массив емкостных сенсоров представляет собой набор конденсаторов, у каждого из которых одна из сторон заземлена. Наличие проводящего объекта вызывает увеличение емкости между сенсором и землей, и срабатывание сенсора можно определить, просто измеряя изменение его емкости (рис. 2).
Параметры емкостей обычно находятся в следующих пределах:
Технология реализации емкостных датчиков прикосновения с использованием системы на кристалле PSoC получила название CapSense:
Технология CapSense использует уникальные особенности PSoC для реализации эффективной обработки сигналов от сенсоров. Возможности PSoC позволяют:
Архитектура PSoC позволяет разработчикам внедрить в свою разработку различные элементы управления, такие как клавиши, полосы прокрутки, сенсорные экраны, датчики приближения. Внутренняя аппаратура не требует подключения каких-либо внешних компонент для обеспечения заряда сенсоров или для их калибровки. Гибкость PSoC и технологии CapSense позволяет разработчикам быстро изменять проект. Вся калибровка происходит программным образом с использованием графического интерфейса. Состояние сенсоров может использоваться PSoC для управления различными устройствами - светодиодами, двигателями, динамиками и т.д., либо может быть передано в ведущий хост-контроллер системы (рис. 3).
Клавиши Клавиши CapSense представляют собой базовую функцию приложения, отслеживающего изменение емкости. Детектирование наличия или отсутствия проводящего объекта (такого как палец) может быть легко осуществлено через различные материалы с различной толщиной (рис. 4). Клавиши CapSense могут, например, использоваться в мультимедийных приложениях для управления громкостью, яркостью, управления питанием и прочих функций. Клавиши CapSense могут заменить дискретные механические клавиши практически в любом устройстве.
Слайдеры Слайдеры представляют собой элемент интерфейса более высокого уровня, чем клавиши. Слайдеры могут быть использованы для получения информации о положении пальца, причем с гораздо более большим разрешением (до 100 раз), чем при использовании отдельных элементов. Это достигается путем интерполяции измеряемых значений с отдельных элементов слайдера (рис. 5).
Существует возможность уменьшить количество используемых контактов благодаря их диплексированию. Диплексирование - метод соединения, когда каждый контакт PSoC CapSense соединен не с одним, а с двумя сенсорными элементами. Эти элементы расположены в таком порядке, который позволяет однозначно определить, какая сторона слайдера активна (рис. 6).
Детектор приближения Емкостной сенсор по определению является детектором приближения. Для обычных клавиш толщина покрытия является дистанцией приближения, т.е. тем порогом, который определяет факт нажатия. В настоящем детекторе приближения не требуется контакта между покрытием сенсора и пальцем или ладонью пользователя. В таком применении требуется увеличить чувствительность сенсора по сравнению с чувствительностью, требуемой для обычных клавиш. Это реализовано путем получения данных от сенсора в течение более продолжительного времени, что позволяет отследить очень малые изменения емкости. Способы измерения емкости Архитектура чипов PSoC позволяет использовать три различных техники измерения емкости:
Метод CSR Метод CSR (рис. 7) основан на использовании релаксационного генератора. В настоящее время этот метод не рекомендуется для применения в виду плохой помехоустойчивости.
Метод CSD Метод CSD использует схему на коммутируемом конденсаторе и токоотводящем резисторе обратной связи (рис. 8). Измеряется коэффициент заполнения выходного битового потока.
Свойства метода CSD:
Метод CSA Метод CSA использует схему на коммутируемом конденсаторе (рис. 9). Измеряется напряжение на делителе образованном источником тока и коммутируемым конденсатором.
Свойства метода CSA:
Примеры использования CapSense
Главная - Микросхемы - DOC - ЖКИ - Источники питания - Электромеханика - Интерфейсы - Программы - Применения - Статьи |
|
Впервые? | Реклама на сайте | О проекте | Карта портала тел. редакции: +7 (995) 900 6254. e-mail:info@eust.ru ©1998-2023 Рынок Микроэлектроники |
|