Поиск по сайту:

 


По базе:  

микроэлектроника, микросхема, микроконтроллер, память, msp430, MSP430, Atmel, Maxim, LCD, hd44780, t6963, sed1335, SED1335, mega128, avr, mega128  
  Главная страница > ЖКИ > Технологии

реклама

 




Мероприятия:




LTPS - низкотемпературная поликремневая технология

Что такое LTPS TFT ЖКИ?

LTPS (низкотемпературная поликремневая) технология - это новейший производственный процесс изготовления TFT ЖКИ. В этой технологии используется лазерный отжиг, который позволяет производить кристаллизацию кремниевой пленки при температуре менее 400°C.

Поликристаллический кремний - материал на основе кремния, который содержит множество кристаллов кремния размером от 0.1 до нескольких микрон. При производстве полупроводников поликристаллический кремний обычно изготавливается при помощи LPCVD (Low Pressure Chemical Vapor Deposition - химическое осаждение при низком давлении из газообразной фазы), а затем отжигается при температуре более 900 C. Это так называемый SPC (Solid Phase Crystallization - кристаллизация твердой фазы) метод. Очевидно, что такой метод не может быть применен при производстве индикаторных панелей, так как температура плавления стекла порядка 650 C. Поэтому LTPS технология - новая технология, предназначенная для производства ЖКИ панелей.

На приведенном ниже рисунке показаны структуры однокристального, аморфного и поликристаллического кремния.

Теперь рассмотрим несколько методов формирования LTPS пленки на стеклянной или пластиковой подложке, которые используются в настоящее время:

1. MIC ( Metal Induced Crystallization - кристаллизация, вызываемая металлом ): Это разновидность SPC метода, но, по сравнению с обычным SPC методом, он позволяет получить поликристаллический кремний при более низкой температуре (приблизительно 500 - 600 C). Достигается это за счет металлизации пленки перед отжигом. Металл позволяет снизить энергию, необходимую для активизации процесса кристаллизации.

2. Cat-CVD: При этом методе осаждается уже поликристаллическая пленка, которая в дальнейшем не подвергается термической обработке (отжигу). В настоящее время уже имеется возможность выполнять осаждение при температуре ниже 300C. Однако, механизм выращивания при каталитическом взаимодействии приводит к растрескиванию смеси SiH4-H2.

3. Лазерный отжиг: Это - самый популярный метод, используемый в настоящее время. В качестве источника энергии используется эксимерный лазер. Он нагревает и расплавляет a-Si с низким содержанием водорода. После этого кремний повторно кристаллизуется в виде поликристаллической пленки.

Подготовка LTPS пленки очевидно более сложна, чем a-Si пленки, но LTPS TFT имеют в 100 раз большую надежность, чем тонкопленочные транзисторы, изготовленные по a-Si технологии, а кроме того LTPS технология позволяет на стеклянной подложке изготавливать в едином цикле и КМОП интегральные схемы. p-Si технология имеет следующие основные преимущества по сравнению с a-Si технологией:

1. Обеспечивает возможность изготовления на стеклянной подложке в едином технологическом цикле интегральные схемы драйверов, что позволяет уменьшить необходимое количество периферийных устройств и стоимость.

2. Более высокий апертурный коэффициент: более высокая подвижность носителей означает, что можно обеспечить требуемое время заряда пикселя при помощи меньшего тонкопленочного транзистора. Это ведет к тому, что большая площадь элемента может быть задействована под область пропускания света.

3. Носитель для OLED: Более высокая подвижность носителей означает, что тока питания вполне достаточно для управления OLED приборами.

4. Компактность модуля: За счет наличия встроенного драйвера требуется меньшая площадь печатной платы для схемы управления.

Характеристики получаемых таким образом TFT ЖКИ будут рассмотрены ниже, а пока рассмотрим основные аспекты LTPS технологии.

Лазерный отжиг

При лазерном отжиге кристаллизация a-Si пленки происходит уже при температуре менее 400°C. На рисунке показана структура a-Si до лазерного отжига и структура p-Si, полученная уже после лазерного отжига.

Подвижность электронов

Подвижность электронов в тонкопленочных транзисторах (TFT), изготовленных по технологи LTPS достигает ~200 см2/В*s, что намного выше, чем у транзисторов a-Si технологии (всего ~0.5 см2/В*s). Повышенная подвижность электронов позволяет увеличить степень интеграции формируемой на подложке ЖКИ интегральной схемы, а так же уменьшить размеры самого тонкопленочного транзистора.

Приведенный ниже рисунок упрощенно показывает к чему приводит повышенная подвижность электронов.

Апертурный коэффициент

Апертурный коэффициент - это отношение полезной площади ячейки к ее полной площади. Так как тонкопленочный транзистор LTPS ЖКИ имеет намного меньший размер, чем транзистор ЖКИ, изготовленного по a-Si технологии, то полезная площадь ячейки, а, следовательно, и апертурный коэффициент, такого ЖКИ будет выше. Как известно, при всех равных параметрах яркость ячейки с большим апертурным коэффициентом будет больше!

На приведенном ниже рисунке можно видеть, что эффективная площадь LTPS TFT больше, чем у тонкопленочного транзистора, изготовленного по a-Si технологии.

Встроенные драйверы

LTPS технология позволяет в едином цикле формировать непосредственно на подложке ЖКИ и интегральные схемы драйверов. Это позволяет существенно снизить количество необходимых внешних контактов и уменьшить размеры самой подложки. Это ведет к тому, что требуемая надежность устройства может быть достигнута при меньших затратах, а следовательно стоимость всего изделия также будет ниже.

На приведенном ниже рисунке упрощенно показаны ЖКИ, изготовленный по a-Si технологии и ЖКИ с интегрированным драйвером, изготовленный по LTPS технологии,. Как видно, количество контактов и площадь подложки у первого намного больше.

Характеристики LTPS технологии:

  • Более высокая реакция электронов
  • Меньшее количество соединений и элементов
  • Низкое потребление
  • Возможность интеграции на подложке интегральных схем драйверов

Производство LTPS TFT ЖКИ

На приведенном ниже рисунке показана структурная схема производства LTPS TFT ЖКИ.






 
Впервые? | Реклама на сайте | О проекте | Карта портала
тел. редакции: +7 (995) 900 6254. e-mail:info@eust.ru
©1998-2023 Рынок Микроэлектроники