В HTML      В PDF
микроэлектроника, микросхема, транзистор, диод, микроконтроллер, память, msp430, Atmel, Maxim, LCD, hd44780, t6963, sed1335, avr, mega128
Предприятия Компоненты Документация Применения Статьи Новости

  • Микроконтроллеры
  • ЖК-модули
  • АЦП
  • ЦАП
  • Интерфейсы
  • Wireless
  • Усилители
  • Компараторы
  • Коммутаторы
  • Датчики
  • Cтабилизаторы напряжения
  • Транзисторы
  • Стандартная логика
  • Светодиоды

    Механические свойства ИС
  • Электромеханика
  • Корпуса микросхем
  • Корпуса Pb-free
  • IP и IK защита
  • Маркировка ИС
  • Резисторы
  • Перечень сертификатов
  • Соответствие калибров AWG
  •  
    Пересюхтюмя


    13-я Международная выставка электронных компонентов и комплектующих для электронной промышленности





    Выставка Передовые Технологии Автоматизации





    Главная страница > Обзоры по типам > Стабилизаторы напряжения
    Пересюхтюмя


    13-я Международная выставка электронных компонентов и комплектующих для электронной промышленности





    Выставка Передовые Технологии Автоматизации


    Точностные параметры

    Основное назначение стабилизаторов - поддерживать выходное напряжение неизменным, равным номинальному значению в условиях изменяющегося входного напряжения, токов нагрузки, температуры окружающей среды и старения элементов.

    К точностным параметрам относятся: точность установления выходного напряжения, коэффициент стабилизации, выходное сопротивление, температурный коэффициент напряжения, временнaя стабильность, шум выходного напряжения.

    Точность установления выходного напряжения обычно указывается для стабилизаторов с фиксированным выходным напряжением. Она зависит, в основном, от технологических факторов. Отклонения выходного напряжения от номинального значения вызваны разбросом элементов, входящих в состав стабилизатора. Точность установления повышают путем лазерной подгонки сопротивлений делителя обратной связи.

    Коэффициент стабилизации определяется как отношение приращения входного напряжения к вызываемому им приращению выходного напряжения стабилизатора:

    Кст = D Uвх /D Uвых.

    Часто вместо этой величины в справочниках приводится так называемая "нестабильность по напряжению", под которой понимают относительное изменение выходного напряжения в % при изменении разности входного и выходного напряжений в заданных пределах. Иногда также приводится нестабильность по напряжению как абсолютное изменение выходного напряжения в мВ при изменении разности входного и выходного напряжений или просто входного напряжения в заданных пределах. Повышение коэффициента стабилизации достигается увеличением коэффициента усиления усилителя ошибки.

    Выходное сопротивление характеризует стабильность выходного напряжения стабилизатора при изменении тока нагрузки:

    Rвых = D Uвых /D Iн.

    В справочниках вместо выходного сопротивления иногда приводится так называемая "нестабильность по току", под которой понимают относительное изменение выходного напряжения при изменении тока нагрузки в заданных пределах, в процентах от номинальной величины для стабилизаторов с фиксированным выходным напряжением и в милливольтах - для регулируемых стабилизаторов.

    Температурный коэффициент напряжения характеризует стабильность выходного напряжения стабилизатора при изменении температуры окружающей среды:

    ТКН = D Uвых /D Т° .

    В справочниках часто приводится так называемая "температурная стабильность", под которой понимают относительное изменение выходного напряжения в процентах от номинальной величины при изменении температуры окружающей среды в допустимых для данной ИМС пределах. Используется также термин "температурный дрейф выходного напряжения", определяемый отношением DUвых/(Uвых.номТ° ) и измеряемый в мВ/(° С*В).

    Долговременная стабильность определяет относительное изменение выходного напряжения в процентах от номинального значения за 1000 часов работы при температуре окружающей среды, соответствующей верхней границе рабочего диапазона.


    <-- Предыдущая страница Оглавление Следующая страница -->